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We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system
(NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS
oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS
oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured
oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on
the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to
number measurement and the localization time for the measured system to enter a phonon-number eigenstate.
We relate both these time scales to the strength of the measured signal, which is an induced current propor-
tional to the position of the read-out oscillator.
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[. INTRODUCTION To achieve a quantum-mechanical phonon-number mea-
surement of a mechanical oscillator, conventional measure-
With device fabrication in the submicrometer or nanom-ment methods, such as the direct displacement measurement
eter regime, it is possible to fabricate mechanical oscillator§3], cannot be simply applied since the observabe, the
with very high fundamental frequencies and high mechanicanumber of phonons in the oscillajatoes not commute with,
quality factors. In the regime when the individual mechanicaffor example, the position or displacement operator. Thus,

quanta are of the order of or greater than the thermal energ§@ively attaching a read-out transducer to the mechanical os-
quantum effects become important. Recently, a highillator results in inaccurate subsequent measurements due to

frequency mechanical resonator beam that Operates at g|gaaCk action. One thus must make sure that the transducer that
hertz frequencies has been reporf&H Unlike quantum op- couples to t'h'e mec.hanlcal resc_)natqr measures only the mean-
tical systems where extremely high-frequency oscillatorsSquare position, without coupling linearly to the resonator’s
vacuum environments, zero temperature, and well-isolateB0Sition itself[2]. _ S

systems are the usual setup, solid state systems normally Some preliminary experiments in this d|rect|9n have.been
exist at finite temperatures and interact with their surroundcoanCted-TheY use a second, driven mechanical oscillator
ings. For a resonator operating at the fundamental frequendgscillator 1 in Fig. 1 as the transducer to measure the mean-
of gigahertz and at a temperature of 100 mK, on averag&duare position of the system_oscnla(«nscnlator 0 in F_|g.

only 20 vibrational quanta are present in the fundamental)- Hereafter, we use the notations of the “system oscillator”
mode. An interesting question is whether we can observ@nd “ancilla oscillator” in the text, but keep 0 and 1 as sub-
guantum jumps, i.e., discretEock or number stajeransi-  SCripts in the mathemaycgl notations. The_basm idea is that
tions in such a true mechanical oscillator in a mesoscopié€ nonlinear, quadratic-in-position coupling between the
solid system[2], as the mechanical oscillator eXcham‘yestwo_oscnlators shifts the resonance frequency of the ancilla
quanta with the outside world or environment. In order toOScillator by an amount proportional to the phonon number
observe guantum jumps, one needs to design a scheme b €nergy excitation of the system osc_:lllator. This freq_uency
measure the phonon number of the oscillator so that the o§hift may be detected as a phase shift of the oscillations of
cillator will stay in a certain phonon-number state long

enough before it jumps to another phonon-number state due'rFor example, Ref[1] provides high-resonant-frequency me-

to the inevitable interaction with its environment, usually chanical oscillators. At the moment of this writing, the anharmonic
through linear coupling to the oscillator position. coupling device is being developéd.
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thermal noise thermal noise fect of the self-anharmonic term, the overall effect of the
l self-anharmonic term on the phonon-number measurement is
small. Finally, we show that the induced electromotive read-
out current[8] from the ancilla oscillator provides informa-

mechanical |~ N\ /" mechanical tion on the phonon number of the system, even in the pres-
oscillator 0 oscillator 1 . . .
Aoy 22 x? ence of higher-order anharmonic terms, and we obtain the
relation between the current and the measured system ob-
l servable.
damping damping In the next section, we discuss briefly the measurement

scheme and Hamiltonian, and obtain the master equation for
FIG. 1. Schematic of phonon-number measurement for d¢he model described above while keeping higher-order self-
coupled mechanical oscillator. Oscillators 0 and 1 are anharmonianharmonic terms. It turns out that the master equation we
cally coupled with coupling strengthy,. Both oscillators are sub- obtain requires two-time correlations of the ancilla oscillator
jected to thermal-noise injection and dissipation. The oscillator 1 iS)perators_ Section IV deals with this issue. We find one- and
driven and a read-out apparatus is attached to it. two-time correlation functions of the ancilla. In Sec. V, we
. . . o . __examine the effect of the self-anharmonic terms on the dy-
the ancilla oscillator with respect to the driving, when driven : . .
at a fixed frequency near resonance. Also, the ancilla oscilyamics of the system oscillator from the master equation of

lator needs to have sufficient sensitivity to resolve an indi-tS "educed density matrix. In Sec. VI, we obtain the depen-

vidual quantum jump. dence of the measurement current on the measured system

In the analysis of this measurement scheme presented [gcillator observable, the phonon number.
Santamore, Doherty, and Crg&§, self-anharmonic term:s;4
in the two mechanical oscillators were neglected due to the
smallness of the coupling coefficients compared to their har-  I- HAMILTONIAN AND THE MASTER EQUATION
monic oscillation frequencies, whesg, =0, 1, is the dis- A. Proposed scheme

placement of the oscillator position from equilibrium. Since ) . .
the self-anharmonic terms are of the same order as the non- OUr model consists of two mesoscopic-scale mechanical

linear coupling termx3x, it is important to include those bridges \_/vith recta_ngular cr_oss_section. One serves as a sys-
terms and analyze the effects on the proposed measuremdffn oscillator(oscillator 0 in Fig. ] to be measured. The
scheme. other is used as an ancilla oscillai@scillator 1 in Fig. 3,

In this paper, we extend the work of Rg§] and investi- and is part of the measuring apparatus. Details of the scheme
gate the effects of self-anharmonic terms on a phononP@ve already been discussed in Réj. A schematic illus-
number measurement. Due to the higher-order selftration is reproduced in Fig. 1. These mesoscopic-size elastic
anharmonic terms, the adiabatic elimination method used iR"1d9es or beams with rectangular cross section are con-
Ref. [5] may not be straightforwardly applied even with the N€ctéd by a device that transmits only one of the flexing
assumption of a heavily damped ancilla oscillator due tgnodes of the system oscillator to the ancilla oscillator. As a

measurement. Here we take a slightly different approach. AESUlt, these two resonators are anharmonically and sym-
the ancilla is assumed to be heavily damped, it will relaxMetrically coupled(for experimental progress toward the

very rapidly to its steady state within a time scale on theScheéme, see Refl]). We label the measured system oscil-
order of the typical response time of the system oscillator!ator with subscript 0 and the ancilla oscillator with subscript
and will appear to the system oscillator effectively as al» With corresponding resonant freq.uenmes of the.two er_xmg
“bath.” To see the consequences of a rapidly decaying ancill'0des labeled as, and w,, respectively. The ancilla oscil-
oscillator on the dynamics of the system oscillator, we use@tor is driven at frequency, with strengthe(t). A measur-

the quantum open systems approach to find the master equf9 appargtus is attached to the ancilla oscnlatpr. The whole
tion for the reduced density matrix of the system oscillatorStructure is subjected to the thermal bath environment. The
In obtaining the master equation, the correlation functions ofntéraction of the system oscillator with the thermal bath
the “effective bath”(or the ancilla oscillatgrare calculated ~Causes thermal dissipation and excitation of the system os-
using the generalizedP-representation approads]. The cillator, which results in random-in-time transitions between
generalizedP-representation approach has the advantage (phonon-number eigenstatese., quantum jumpsA change .
removing some of the unnecessary restrictions imposed iff! the energy of the system oscillator appears to the ancilla
Ref. [5]. oscillator as a shift of the resonant frequency via the anhar-

We find that in the presence of the self-anharmonic ternfnnic coupling. This frequency shift may be detected as a
x} of the ancilla oscillator the effect of increasing driving phase shift of the oscillations of the ancilla oscillator with

strength and self-nonlinearity tends to shift the resonanc&SPect to the driving, when driven at a fixed frequency near
frequency, increase the peak value, and decrease the width Sonance.
the response of the peak bfI'y (see Fig. 2 in Sec. VA

The quantityl’/T'y is the ratio of the back-action diffusion
coefficient (or decoherence ratd” [see EQ.(55)] and its

valuel', at zero self-anharmonicity and zero detuning. If the The free Hamiltonian for the two bridge oscillators 0 and
damping of the ancilla oscillator is much larger than the ef-1 is

B. Model Hamiltonian
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Heree = ﬁwOaTa+ hw b, (1) As for detecting phonon number in the system oscillator,

T . N we adapt a magnetomotive detection scheme suggested by
wherea' and a are creation and annihilation operators for v, ke et al. [8,11,13. The voltage developed is proportional
oscillator 0, respectively, and similarty andb for oscillator ¢, dx,/dt, wherex; is the displacement of the beam from its
1. The ancilla oscillator is driven at frequenay with driv- gqyilibrium position. The current induced by this voltage is
ing strengthe, monitored by phase lock-in amplifier. An experimenter

Hyrive = 1€ COLwit) (b + b). (2)  monitors the amplitude of the current and its phase with
. _ _ o respect to the driving current that is set to a frequency near
In the interaction picture, the driving term becomes resonance. The details of the relation between the measured
o t +isw s current and the phonon number of the system oscillator are
Harive = 2e(b’e™™ + be™™), ) derived in Ref[5].
where éw is the detuning between the ancilla resonant fre- There are two physically distinct environments in the
quency and the driving frequency; — wg. model: the thermomechanical environment of each oscillator

The two oscillators are coupled anharmonically throughand the electronic noise environment of the electrical system
the special coupling device that controls and allows only onéhat ultimately provides information on the motion of the
type of strain(the longitudinal stretchto pass to the other ancilla. The environments are modeled as thermal baths,
oscillator. Beyond the linear elasticity theory, the two flexing €ach consisting of an infinite number of harmonic oscillators.
modes, which are perpendicular to each other, are coupledhe couplings between the oscillators and the thermal baths
Expansion of the elastic energy with respect to the strair@re considered as weak, linear, and Markovian; thus we use
tensor is taken up to second order. The next term, cubic ithe rotating-wave approximation. The Hamiltonian of the
the elastic energy, gives quadratic terms in the equation daths and their coupling to the oscillators can then be written
motion [9,10]. Since the coupling of the two modes of the as
two beams is symmetric, and since the two modes are not
coupled at the linear level, the first order in couplingds?, Hoan™ 1 2 2, 5B 1Bsn, (8)
where x; is the displacement operator. So we expand the ° 0

anharmonic terms up to first order in coupling and obtain
P Ping Voan=h(Qhea + a'Qgo) + (Qfyb + b'0gy)

Hann= (XX + NooXg + A1X6 + X12X}). (4 + RO b +b' ), 9)
~ 5 where s runs over three different baths: the thermal baths
Vanh=fiko1XpX1, (5) coupled to the system oscillat§B0) and ancilla oscillator

(B1), and the electroniémeasuremeintbath coupled to the

where);; is the coupling coefficient. The high frequencies of ancilla oscillator(Bm). The operator

the resonators, i.e(wy—w;) much larger tharim and their
damping rates, allows us to use the rotating-wave approxi- Q=2 g(wy)Bsp, (10)
mation. Thus we write the anharmonic terms as n

Hann=iNgo(@'a)? + 7ix11(b'b)?, (6) consist; of. bath operators, gnd the coupling to the bath
modes is given by the coefficiengg(w,,).

Vann=fikgsa'ab'b, () C. Master equation

where we have defined the standard raising and lowering Using the standard technique for open quantum systems,
operators for the oscillators, a=\Vmywy/2%ix,  we first obtain the master equation for the joint density ma-
+i\1/2hmywepo, @' is the Hermitian conjugate of, and  trix of the two oscillatorsR, by tracing out the bath vari-
similarly for b andb' with the subscript 0 replaced by 1. We ables:

have also introduced new coefficienis (without tildeg

which all have the same dimension of frequency. — =—iwy(a'a,R) —i\gd (a'a)?,R] — i dw(b'b,R)
The coupling termg,atab’b commutes with the observ-  dt
able a'a, enabling a quantum nondemolitig®ND) mea- —ie(b"+b,R) =i\ [(b'D)2,R] - iNgy(atab'b,R)

surement. The termsga’a and A;b'b shift the resonance

frequency by a constant amount, so we have absorbed these ~ *+ #(No+ 1)D[a]R+ »NoD[a']R+ «(N; + )D[b]R
quantities into w, and ;. The terms#\yo(a'a)? and + kN, D[bTIR (11)
#ix1,(b'b)? are analogous to Kerr nonlinearities in nonlinear ! '

optics. Since these terms commute with the measured olvhere

servable(a'a), they will not change the system phonon- D[O]R= 20RO - (O'OR+RO'0) (12)
number eigenstates; however, the Kerr effect causes an ’
intensity-dependent phase shift. Unlike a coherent state, in D[OT]R: 20'RO- (OO'R+ROO) (13)

which this effect results in rotational shearing, a thermal state
will not be affected by phase shift, due to its rotational in-are defined for arbitrary operatg@sandR. The damping rate
variance. of the system oscillator is given by
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v = mPgo(®o)|Ggol o) 2. (14)  of the two oscillators under the approximation that the an-

i ) _ cilla oscillator is heavily damped. Explicitly, the second term
It is related to the quality facto, of the system oscillator ¢ the |ast line of Eq(19) can be written as
by v=wq/2Q,. We have combined the damping rajesand

7, due respectively to the thermal bath and measurement on 't

the ancilla oscillator, intoc=u+ 7, where fTrl[H,(t),[H.(t’),Reﬁ(t)]]dt’
p = mem(@1)|gam(@y) %, (15 0

t
7= m0g1(w1)|gg1(w)[*. (16) =—(\gp)? f afa(taa(t’)p(t)(bb(t)bb(t’))dt’
0

Here o w) is the density of states of bathat frequencyw.

The N; are the Bose-Einstein factors '

1 +(Ngp)? f a'a(t)p(t)a’a(t’)(b'b(t’)b'b(t))dt’
No = W’ (17) 0
andN;=(7Nj+uN,,)/«, where + ()\Ol)ZJOt aTa(t’)p(t)aTa(t)(bTb(t) bTb(t’»dt’
1 1
Ni= Fer_q Nm™ gfmar 1 (18)

t
- (\op)? J p(Hata(t’)a’a(t)(bb(t’)b’b(t))dt’ .
with B,=(kgTo) ! and T, the temperature of bath In Eq. 0
(12), the first and the second lines are the free Hamiltonian (20)

and nonlinear Kerr effect terms for system and ancilla oscil-

lators, respectively. The third line in EL1) is associated The exact correlation functions of the ancilla oscillator are
with the anharmonic coupling, and the last two lines aren,Ot easy to evaluate because of the presence of the anharmo-

consequences of the interactions with thermal baths. nicity, the driving, and the decay terms. However, one can
make an expansion of the state of the ancilla oscillator

around its steady state and linearize the fluctuations, assum-
ing them to be small7,14].

Define the steady-state mean field amplitudes(las

To proceed further toward a master equation for the re=S,. The operatob can be written in terms of small fluc-
duced density matrix for the system oscillator alone, the antuations about the steady-state mean value as
cilla oscillator is assumed to be heavily damped due to mea-
surements i.e.«>\;;,v. In this case, the ancilla oscillator b(t) = Bo+ by(1). (21
will relax very rapidly to its steady state and appear to the
system oscilléltorpasya “bath.” In%act, N << wlpgnd No1 Then,_ keeping_ terms up to unagrjratic orderbipbj, the in-
<«, the ancilla oscillator in Eq(11) will remain near a teraction HamiltoniarH,=ho,a’ab’b becomes

thermal steady state with average number However, we _ + 2 " 1
will relax the condition\1,< w; and treat the interactiony; Hi = Mosa'al|Bol” + Boba(t) + Boby (D) + by()by()]. (22)

ter1n_1 pertutrrt])anvely. f th id d f th .lThe first term in Eq(22) contributes to a shift in the resonant
0 see the consequences of he rapid decay of the anci 'ﬁ"‘equency of the system oscillator by a constant amount and

oscillator on the dynamics of the system oscillator, we US&an be combined with the free Hamiltonian. Inserting this

Eer;cu_rt;\aﬂgn ;Pt?oryt and ex%andd the m(';etractmn :'t?]m'lton_'l?rlaxpression back into the first term of the last line of E®)
1(=Ao;2'ab’b up to second order, and trace out the ancillay; o5 the first-order expansion term

oscillator variables. This implies that we need to calculate

the relevant steady-state averages and correlation functions_; Mo Tralata®)b™b(t), Re()] = — ingatat), p](blbl(t)%

for the ancilla oscillator in the presence of the anharmonic

term \;,(b'b)2. (23
In this case, the master equation for the reduced densi

matrix p(t) for the system oscillator alone can be written a

do(t)
dt

Ill. EFFECT OF HEAVILY DAMPED ANCILLA
OSCILLATOR

Where we have used the fact that averages of fluctuation
Sfields vanish, i.e.,

=—iwg[a'a,p(t)] - ixod (@)% p(t)] + ¥(Ng + 1) (by) = (b]) = 0. (24)

Now we turn our attention to the second-order term, Eq.
(20). Note that, since> v, the phonon numbea'a(t) of the
t system oscillator changes with time on a time scale much
- J Tra[Hi(0),[Hi(t"), Rex() 110t (19 Jarger tharb'b(t) of the ancilla oscillator. So we can approxi-
0 matea'a(t’) =a'a(t) in Eq.(20) and pull the system oscilla-
where R(t) = p(t) p41(t) is the effective joint density matrix tor terms outside the integral. Then EG0) becomes

xDla]p(t) + vNoD[a'lp(t) =i Tri[H,(t), Res(t)]
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t to preserve the positivity of the Hermitian density operator.
f Tra[H,(0),[H(t"),Rex(t) ]1dt’ Using the above transformations, the Fokker-Planck equa-
0 tion corresponding to the master equation E8) can now
be written as

t
~ (N ¥Ha'a(t)p(t)a’a(t) - [aa(t)]?p(t)} J (B(t,t"))dt’
0

t zF’(,é):(i[(l<+i5w+i)\ll),B—Zi)\llﬂza+ins]
+(\opHa'a(t)p(t)a’a(t) - p(t)[aa(t)]*} f (B(t',t))dt’ ot I
0

P d
(25) - i)\llo"_lgzﬂz + %[(K —idw- i)\ll)a - 2i)\11a2,8
where R P ) -
—i€] = iN—5a%+ 2kN;—— |P(B). 29
(BL)) = (B Xby(Dby(t) + | By (DBLE)) TGz 2N PR (29

+ | BolXbi(Hby(t)) + (B XbI(DbL(t')), (26)

The argument of the generalize®l function is 23=(,8,a)T.
, 4 , , The correspondence principle between operatorscamgn-
(B(t',1)) = (Bo) Xba(t")by(1)) +Bol(ba(t)bi (1)) bers is as fgllowsﬂﬁgandzwb’r. Howevgr,(ﬁ,a) are not
+|BolXbl(t)by(1)) + (Bo)Xbl(t")bl(t)), (27)  complex conjugates. Drummond and Gardiner have shown

and higher-order fluctuation terms thaﬁ are ignored. The [6] that the Fqkker-PIanc}( equatio.nﬁhca_m be tra_nsformgq
linearization transforms the second-order correlation funct®, @ §t0(2:haStIC differential equation W'.th positive definite
tons of the ancilla operators,(b'b(t)b'b(t’)) and diffusion.” They found that the stochastic differential equa-

(b™b(t")b'b(t)), into first-order correlation functions of fluc- tions in the lto calculus corresponding to E@9) are

tuation fields, (bi(t)b,(t")), (bI(®)bI(t")}bl(t)by(t')), and
uation_fields (b1(Oby(t")), (by(Hby(t)Xby(H)by(t')), an a[B] [=ieBlx+idw+ing + 2ihgBa)
(by(t)by(t")). — = . . . .
| a ie— a(k—idw =ik — 2iN11a)
IV. ONE- AND TWO-TIME CORRELATION FUNCTIONS . {-2”\11/32 2kN; T’T&} (30
OF ANCILLA 2kN;  2iNj0° &\

In this section we calculate the one- and two-time corre- ) ]
lation functions of the ancilla oscillator. For this purpose, Where &, and ¢, are random Gaussian functions, so tjfat
first we need to calculate the one-time correlation functionéNd « are complex conjugate in the meihis stochastic
of a single driven anharmonic oscillator. We will follow the differential equation is nonlinear and not solvable as it is.
method of Drummond and Wallgl4], who obtained one- However, it is reasonable to use a small-noise expansion and
time correlation functions. Then we extend their method tdinearize the fluctuations about the steady state of the mean
calculate two-time correlation functions. field amplitudes. Thus we writ8 in terms of the mean am-
The master equation for the driven, anharmonic ancillaPlitude and first-order expansion of the fluctuation,
oscillator interacting with the thermal bath is given by

P = —i8u[b'b, py(t)] ~ ielb+ b, py(t)]
dt where 3, is the steady-state mean amplitude @®fand is
=~ ixgg[(b'0)?,py()] + k(N1 + 1)D[b]ps (1) given by
+ kN Db Tpy (1), (28) ic
where p, is the density matrix of the ancilla oscillator and Po= (8w +Nqyq+ 2014 Bo/D) + &’ (32)

Sw=w;—wy is the detuning, withwy the driving frequency.
The exact steady-state one-time correlation functions for
system with master equation E(R8) at zero temperature
were given in Refs[7,14], in a discussion of optical bista-
bility of a coherently driven dispersive cavity with a cubic

And B is the zero-mean fluctuation amplitude. We have a
similar expression fow. Thus 8, and oy are complex con-
jugate to each othefi.e., Byan=|ap|?>=|Bs/?=ngy). Then to

. L o . . first order in the fluctuations, the fluctuation amplitude vector
nonlinearity in the polarizability of the internal medium. At -

finite temperature, no exact solution has been found. p1=(B1, ;)" obeys a stochastic differential equation
Our first objective is to derive a stochastic differential
equation from the quantum master equation. Representing @Note that their notation is different from ours: thei corre-
density matrix in a coherent state basis is useful in systemgponds to oui and theirg! to our e.
described by Bose operatds§,b. Due to the presence of the  3The means of3 and a are complex conjugates. However, fluc-

nonlinear, self-anharmonic term, we will use the generalizeduation introduces a stochastic component, ang smd « deviate
P representation introduced by Drummond and Gardj6gr from being complex conjugate.
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J - p: 12( 0\ ¢ and
Eﬂl(t) =—A - B(1) + DBy &), (33
Where%:(gl,gz)T is the noise vectoA is the linearized drift _ 5
matrix, andD is the diffusion matrix evaluated #=3,. The D= {_ 218y 2&Ng } _ (35)
matricesA andD are 2kN;  2iNgq03
_ |:K+i5w+i)\11+ 4”\11”0 2|)\11,8(2)
~ 2IAap K =160 = 1h1 = 4k11No The one-time correlation matrix can be calculated using the
(34 method of Chaturvedet al. [7,14-16:
|
o [ B <ﬂlal>] _ 1| - Mk =60 =ik~ 4Nano) (2N + 1) Nafic+ 8w + iy + Aikaanol? + 205G
' () (a) A2 Nylk+ido+iNyg +4iNyng2+ 2030 —iNpiaf(k+i6w +iNgy + 4iNgng) (2N, + 1) |
(36)
[
where t,t')=exg—-A(t-t t,t),
h Ct,t') =exd-A(t-t)]C(t,1) (40)
A2= P+ A2, (37) and fort<t’,
C(t,t") =C(t,t)exg - AT(t' - t)]. (41)

A= (8w +N1)° +8(8w + N)hiNo + 12505, (38)  Let us defineM (t,t') = ex ~A(t-t')]. The matrixM can be

We now derive an expression for the two-time steady statg@lculated as follows. Let the matrbk=(uy, up) diagonalize
correlation matrix A with eigenvalues.,. The eigenvalues for this>22 matrix

can be found from the characteristic equation

[ BOBLM)) (Ba(D)aa(t)) Tr(A) £ \[Tr(A)]2- 4 detA) ,
ct= Lal(t)ﬁl(t’» <a1<t>a1<t’)>]' (39 A= — Trtide. (42
Fort>t’, We then obtain the matriM as
|
] exd (- t)] 0 N
. U{ 0 exy - x_(t—t’)]}u

_ L[ (A= 0e T (A + e 26 B (- e 4 e )
- 2A, lelag(e—}\_(t—t') _ e—)\+(t—t’)) (Ay+ C)e—x_(t—t’) +(Aq - C)e—m(t—t’) ' 43

wherec=4\1ny+ dw+\1;1. The two-time correlation matrix all the two-time correlation functions we need to find. For
Eq. (39) then follows directly from Eqs40), (41), and(43),  non-normally ordered time correlation functions, some care
as well as the fact that ekpA(t—t’)]=M(t,t’) and needs to be exercised. Using the procedure described, for

exgd-AT(t' -t)]=MT(t',t). example, in Refs[16,17, we obtain the following operator
The detailed expressions of the two-time correlation functo c-number correspondence:
tions are shown in the Appendix. We note that in theep- , ,
P b (b1 (Oby(t)) = (By(DB(t), (44)

resentation, thec-number time correlation function corre-
sponds to a normally ordered time correlation function of the - ) ,
operators; thus the correlations above do not correspond to (by(H)by(t')) = (Br(D s (t')) + Myy(t,t'), (45
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(bI(t)bl(t'» = (a; (1) By (1)), (46) also proportional td™~. The last two terms in Eq52) can
be derived from the thermal coupling to the system and are
<b{(t)b}(t’)>=(al(t)al(t’)>+ My(t,t) (47) responsible for the quantum jumps. In the case whe,

the conditional master equation of E&2) will describe a
QND measurement of the system oscillator phonon number.

(by(t)by (1)) = (Br(OAL)) + ML 1), (48) The time the system stays in a given phonon-number state
: before making a transition due to either excitation or relax-
(by(t)b1(1)) = (ay(t) B1(t")) + ML, t"), (49)  ation is proportional ta™L. To be a good quantum measure-
ment of a phonon-number state, we want the system’s dwell-
(bI(t")by(1)) = (Bi(t) ey (t")), (500 ing time to be long compared to the time necessary to
determine which number state the system is in, (E/v)
(bJ(tb}(V) =@y er(t)), 5y >t
where M;(t,t') are the matrix elements of the matrix A. Effects of the anharmonic terms

M(t,t"), Eq. (43). . . . .
(t.t), Eq.(43 From Eq.(52), we notice several important points. First,

in the case of no detuning and no nonlinear self-anharmonic

V. MASTER EQUATION FOR A REDUCED terms( i.e., Sw=0, A\go=\1,=0), we have
DENSITY MATRIX
A =N\oi[N; + (el 6)?], (56)
Having found the one- and two-time correlation functions,
we can now evaluate Eq&3) and(25) and obtain the mas- 0=0, (57)
ter equation for the reduced density matrix of the system
oscillator as 2
. LG R (58)
L = —i(wy+ A)[a'a,p] - [ (a'a)? p] - Ia'a [a"a,p]] “
dt These results agree with the results of a simpler model dis-
+ (N + 1)D[a]p + vNyD[a']p, (52)  cussed in Ref[5], using a slightly different adiabatic elimi-
nation approach.
where Second, the steady-state solution E§2) of Eq. (30)

1 gives
A =Ngg| Ng+ —5(Ny|k +i 6w +iNgg + 4iNging|? + 2\3,n3 )
01< o Az( 1|K @ 11 11 o| 1no) |E|2: nO[K2+ (8w +Nyg+ 2)\11%)2]_ (59)

(53) Equation(59) has an analogy to a classical anharmonic os-
cillator [13]. Bistability due to a Kerr nonlinearity is a well-
known phenomenon. Classically the oscillator will take one
or the other of the stable solutions. Using the Hurwitz stabil-
ity criterion, to obtain a stable solution for Eq83)—(35) it

\2 is necessary to have
F = A_OanO(ZNl + 1)[|K + |5(,0 + i)\11+ 4i)\11n0|2

AGN
0= )\00+ ?\120(50) + i)\11+ 2)\11n0), (54)

Tr(A) >0, (60)
)\2
- 4)\11”0(5(1) + )\11"‘ 3)\11”0)] = ﬁKGZ(ZNl + 1) . Det(A) >0. (61)

(55) For the matrix, Eq(34) gives TfA)=2«>0 for a dissipative

or loss mechanism. Therefore the threshold points are deter-
We have seny=|8,/%, and A? is defined in Eqs(37) and mined by DetA)=A2=0. However, in the quantum regime
(38). In obtaining the last equality of E¢55), we have used at zero temperature, bistability appears only during the tran-
Eq. (32). sient period and does not exist in the steady qiafg. We,

In Eqg. (52), A in the first term is the resonant frequency nevertheless, note that the linear theory that we use to calcu-
shift due to interactions. The second term is the Kerr nonlindate the steady-state correlation functions at finite tempera-
ear phase shift, with coefficiefid? depending on the anhar- tures would break down at the instability points.
monicity of both oscillators\gy and A4, as well as the de- Second, from Eqs(52) and (55), we see that whedw
tuning of the ancilla oscillator. The parameiéis the phase =0, the conditionk>\,; makes the effect of the nonlinear
diffusion coefficient or decoherence rate, associated wittself-anharmonic terms ih andI” very small, which justifies
back action due to an effective measuremena'@ Physi- the assumption of neglecting, in Ref. [5]. However, our
cally, due to monitoring, the system would localize or col- calculation allows us to do a quantitative analysis without
lapse into a phonon-number eigenstate on a time scale ofiaking this assumption.
orderI'". The measurement time that is needed for the mea- The value of the phase diffusion coefficieht(as com-
surement apparatus to distinguish one state from the next jzared to the damping rate) is important to the phonon-
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—_—

i (y=\2u(b+b" indeed corresponds to a phonon-number

i — Mu=005, =05 measurement of the system oscillator. We anticipate that the
I Au=005, e=2 average measured current of the ancilla oscillator is propor-

! —7 Au=035, =05 tional to the average phonon number in the measured system
! == An=05, e=1 - oscillator. In addition we need to show that the coefficient of

! proportionality is related to the localization rate, which de-

'.| termines how long it takes to distinguish one number state
.‘
.!

50 i - - important to show that an observation of the average current

40 -
3.0 |

] from the next. Thus a strong signal corresponds to a rapid

localization rate. Furthermore, we expect that the localization

rate is proportional to the back-action-induced phase diffu-

sion coefficientl’, so that the better the measurement, the

larger is the back-action noise.

0.0 To demonstrate this, first we use the Hamiltonian to ob-
-4.0 2.0 0.0 2.0 40 tain the quantum Langevin equation for the ancilla oscillator

da(detuning) operatorb:

i
i
i
i

i

20 | i
i

i

i

i

FIG. 2. The ratio ofl /T’y as a function of detuning at different db o . T . +
values of driving strength and self-anharmonidierr effect cou- —. =—ie—idwb—ikya'ab—i2\y b'bb—[7b(t)
pling). The parameters are presented in units of the dampingcrate _ -
= V27B;s()] = [ub(t) = V2uDin(1)], (64)
number measurement scheme and to the observation of

uantum jumps. To see the effects of self-anharmonicity and  db'
d JLump ty B etiswb’ +iNggatabl +i2) bbb - [7bT(t)

driving and detuning of the phase diffusion coefficidht dt

compared to its valué’y at zero self-anharmonic coupling — —

and zero detuning\,;=€e=0) [5], we plot their ratio —\29B,(1)] - [ub'(t) = V2uDj (1], (65)
r where B;,(t) is the input noise[17]. The steady-state

F_o =\ (62)  [(db/dt)=0] average ofb)=g3, for the ancilla oscillator in
isolation (i.e., with Ag;=0) is given by the same expression

in Fig. 2. Note thaf” diverges at\?=0, which are the insta- as Eq.(32). Linearizing around the steady state, renaming

bility points where the linear theory is not valid. The param-the operator describing the quantum fluctuatioA$), and

eters(in units of x) in Fig. 2 are chosen so that the ancilla assuming thaa'a do not change appreciably over the typical

oscillator is away from these points. For example, if we wergijme scale of the ancilla oscillator, we obtain

to increase further the driving strength in the dot-dashed line

plot of Fig. 2, toe=1.2, say, the ancilla oscillator would then ~ dby _ (8w + Apby + 2)\11(2n0b1+,8§bI) +hpyBoa'a

be in the instability regime. When the nonlinearity; is dt
small, the solid line plot in Fig. 2 shows the linear resonance — —
of small driving. The dotted, dashed, and dot-dashed line = kby +V27Bin + V2uDip, (66)

plots illustrate that increasing the driving strength and the
nonlinearity tends to shift the resonance frequency, increasdb’{ . N + o0t + +
the peak value, and decrease the width of the pedkidfy). i = (6w + N19)by + 2N15(2nghy + (agby) + Nogaga’a— by

Carr and Wybourne have estimated an anharmonic coef-

ficient \; for a beam with rectangular cross sectjds] + \"%B;rn +\2uD}, (67)
4 .
T 7B or, equivalently,
N = (63

199 2 2/ 5.1 — J—
128pfwiLiwi E(b1> _ <b1> (MlﬁoaTa*' V27By, + \"ZMDin>
whereB is the b_ulk modulusp; is the mass dgnsn;t,,yv,t dt\b! bl Nogaroa'a+ \,,EIB;;*_ \J’ZTLDL .
are the dimensions of the beam: length, width, thickness,

respectively. A simple estimation afand\,, using realistic (68)

values for a mesoscopic mechanical oscillator reveals thayhere A is defined in Eq.(34). To calculate(b+b")=,

N\11 is many order of magnitude smaller than +ao+(b1+b1> in the steady state, we seidb,/d=0
=(db}/dt) in Eq. (68), to obtain
VI. MEASUREMENT CURRENT +
(b)) _1[ NorBod'a
In the measurement scheme, we do not observe the pho- <bI> =A Norroda)” (69)

non number of the system oscillator directly. Rather we per-
form a phase-sensitive, “homodyne” measurement on th&hen after a simple calculation, we obtain the measured
quadrature(b+b") of the ancilla oscillator. It is therefore mean signal
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— n_ . m—M\oi . ) the position of the driven read-out oscillator. In a magnetic
V2pu(by +y) = —i VZMF({[K = i(8w+ 11+ AN11l Bol?) field, a wire patterned on the moving read-out oscillator will
result in an induced current which can be directly monitored
+ 2iN14(ap)?]Bo} — H.c)(a'a) by electrical meang8]. The current gives direct access to the
—\o1 position of the ancilla oscillator and, through the mechanism

= "\"ZMF[K(BO‘ @) described in this paper, to the phonon number of the mea-

sured system oscillator, even in the presence of the self-

= (8w +Ny1+ 2\ 11|BolA)(Bo + ap) (@'a). anharmonic terms. We have shown that this scheme realizes

(70) an ideal QND measurement of phonon number in the limit
that the back-action-induced phase diffusion rate is much
larger than the rate at which transitions occur between
i ; —2e\o1 phonon-number stateB/v— . When the ratid’/ v is finite
V2u(by +by) == \2u A2 (a'a). (7)) and large, it is then possible to observe, in the read-out cur-
rent, quantum jumps between Foglumber statesn a me-
We note that the coefficient on the right hand side of 4)  soscopic mechanical oscillator, as the mechanical oscillator
is Progortional toyI", with a proportionality factor given by exchanges quanta with the environment.
—\8ulk(2N;+1). As the actual read-out current is simply  We briefly discuss below some possible realistic values
proportional to the average position of the ancilla oscillatorfor I" andv. The value of, depends on the external driving,
[2], Eq.(71) gives the expected proportionality between theas well as the materials and dimensions of the mechanical
average measured current and the average phonon numbengfams(oscillatory. Here we quote the example in R¢§]
the system oscillator. using two GaAs mechanical oscillators with resonance fre-
In a typical experimental run, the measured current Wil'quencie3w0:2.3 GHz, 0,=0.36 GHz, andQ factors Q,
contain a noise component made up of thermoelectrical noise 1 9po,Q,=1000. The dimensions of the system oscillator
in the }ransducer circuit as well as intrinsic quantum noise; . . 6¢ 0.04x 0.07 um?® and those of the ancilla oscillator
that arises directly from the back-action noise when we meaz o 0.6< 0.04x 0.01 um®. With the magnetic field 10 T and

sure phonon number. In order for the measurement to bg driving current 1uA, Ty and » will be Ty=~1.5% 10°/s

quantum limited, we need_ to ensure that the_domlnant SOUrCEnd v~1.2x 10°/s, orIy/»=0.013. A clear observation of
of noise is back-action noise. Recently, considerable progress

toward this limit has been made in a nanoelectromechanicaﬂuamu_m Jumps reqU|reE0/v>_>1, SO that the prgsent ex-
system[19] ample is two orders of magnitude below the desired param-

eter regime. To increase the ratio Iofto » we can improve

on some of the parameters. One way is to increaseQthe
VII. CONCLUSIONS factor of the system oscillator. Another way is to use lower-

density material such as carbon nanotubes as well as to de-

We have investigated a scheme for the QND measuremegtease the thickness of the oscillator. These improvements

of phonon number(cf. [5]) using two anharmonically are feasible with current fabrication technology. In addition,
coupled modes of oscillation of mesoscopic elastic bridgesi js also possible to engineer the nonlinear coupling between
We have included the self-anharmonic terms neglected in thg,o oscillatorg4]. Furthermore, different driving and detec-
previous analysigS], and analyzed the effect of higher-order o, gchemes other than magnetomotive detection can be

?r:ha_rmr?mc _tlergws n tr&e\;ivpprr]ommart]lon thtit tth_e ?r?cnla 0sCileonsidered to increase the driving strength. Given the steady
atoris heavily damped. VV€ have shown that in eloreser]Cl‘?nprovement in fabrication technology and experimental

of a self-anharmonic term} of the ancilla oscillator, the . . : .
. . o . .. techniques, we believe that observing quantum jumps be-
effect of increasing driving strength and self-nonlinearity . . : :
een phonon-number states in a mesoscopic oscillator will

tends to shift the resonance frequency, increase the pe% Lo

value, and decrease the width of the response of the peak F possible in the near future.

I'/'Ty as shown in Fig. 2. If the damping of the ancilla oscil-

lator is much larger than the effect of the self-anharmonic

term, the overall effect of the self-anharmonic term on the ACKNOWLEDGMENTS
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Using Eq.(32), we can simplify Eq(70) further and obtain
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APPENDIX: EXPRESSIONS FOR THE TWO-TIME
CORRELATION FUNCTIONS

The two-time correlation functions in the main text for

C(t,t’), wheret>t’, are
1
(BOB()) = X{(Al +c)exd— \(t—-t")]
1

2
+ (A= cexii- (- g) + 10
1

x{exgd— N (t—t")]-exd—-A_(t-t")]}
X{Bra1), (A1)

1
(ay(t)B4(t)) = 2_A1{(A1 +ojexd— N(t=t)]+ (A -0

2
Xextf- Nt t) N ) + 8
1
x{ex~ N (t-t)] - exgd~ A_(t-t')]Kad),

(A2)

PHYSICAL REVIEW A 70, 052105(2004)

_ a,2
(BulOay(t)) = %’{exp[— A(t-1)] - exif- A(t—t)]}

(B + i{ml—c)exd— A(t-1)]

+(Ap+o)exd— A_(t—t") KBy, (A3)

— az
(Bt = 2ol n.(t-t)] - ext- -t 1))

X(ayBy) + ZiAl{ml — Oexi- M(t- )]

+ (A +o)ex - M (t—t)]Kad), (A4)

where c=4\;jng+dw+hy;  and  A2=(Sw+\11)?+8(sw

+\1)A 1N+ 120203 as in the main text. These equations
give thec-number two-time correlation functions we need to
obtain the operator two-time correlation functions in Egs.

(44)~(51).
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