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We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system
(NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS
oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS
oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured
oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on
the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to
number measurement and the localization time for the measured system to enter a phonon-number eigenstate.
We relate both these time scales to the strength of the measured signal, which is an induced current propor-
tional to the position of the read-out oscillator.
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I. INTRODUCTION

With device fabrication in the submicrometer or nanom-
eter regime, it is possible to fabricate mechanical oscillators
with very high fundamental frequencies and high mechanical
quality factors. In the regime when the individual mechanical
quanta are of the order of or greater than the thermal energy,
quantum effects become important. Recently, a high-
frequency mechanical resonator beam that operates at giga-
hertz frequencies has been reported[1]. Unlike quantum op-
tical systems where extremely high-frequency oscillators,
vacuum environments, zero temperature, and well-isolated
systems are the usual setup, solid state systems normally
exist at finite temperatures and interact with their surround-
ings. For a resonator operating at the fundamental frequency
of gigahertz and at a temperature of 100 mK, on average
only 20 vibrational quanta are present in the fundamental
mode. An interesting question is whether we can observe
quantum jumps, i.e., discrete(Fock or number state) transi-
tions in such a true mechanical oscillator in a mesoscopic
solid system[2], as the mechanical oscillator exchanges
quanta with the outside world or environment. In order to
observe quantum jumps, one needs to design a scheme to
measure the phonon number of the oscillator so that the os-
cillator will stay in a certain phonon-number state long
enough before it jumps to another phonon-number state due
to the inevitable interaction with its environment, usually
through linear coupling to the oscillator position.

To achieve a quantum-mechanical phonon-number mea-
surement of a mechanical oscillator, conventional measure-
ment methods, such as the direct displacement measurement
[3], cannot be simply applied since the observable(i.e., the
number of phonons in the oscillator) does not commute with,
for example, the position or displacement operator. Thus,
naively attaching a read-out transducer to the mechanical os-
cillator results in inaccurate subsequent measurements due to
back action. One thus must make sure that the transducer that
couples to the mechanical resonator measures only the mean-
square position, without coupling linearly to the resonator’s
position itself[2].

Some preliminary experiments in this direction have been
conducted.1 They use a second, driven mechanical oscillator
(oscillator 1 in Fig. 1) as the transducer to measure the mean-
square position of the system oscillator(oscillator 0 in Fig.
1). Hereafter, we use the notations of the “system oscillator”
and “ancilla oscillator” in the text, but keep 0 and 1 as sub-
scripts in the mathematical notations. The basic idea is that
the nonlinear, quadratic-in-position coupling between the
two oscillators shifts the resonance frequency of the ancilla
oscillator by an amount proportional to the phonon number
or energy excitation of the system oscillator. This frequency
shift may be detected as a phase shift of the oscillations of

1For example, Ref.[1] provides high-resonant-frequency me-
chanical oscillators. At the moment of this writing, the anharmonic
coupling device is being developed[4].
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the ancilla oscillator with respect to the driving, when driven
at a fixed frequency near resonance. Also, the ancilla oscil-
lator needs to have sufficient sensitivity to resolve an indi-
vidual quantum jump.

In the analysis of this measurement scheme presented by
Santamore, Doherty, and Cross[5], self-anharmonic termsxi

4

in the two mechanical oscillators were neglected due to the
smallness of the coupling coefficients compared to their har-
monic oscillation frequencies, wherexi, i =0, 1, is the dis-
placement of the oscillator position from equilibrium. Since
the self-anharmonic terms are of the same order as the non-
linear coupling termx0

2x1
2, it is important to include those

terms and analyze the effects on the proposed measurement
scheme.

In this paper, we extend the work of Ref.[5] and investi-
gate the effects of self-anharmonic terms on a phonon-
number measurement. Due to the higher-order self-
anharmonic terms, the adiabatic elimination method used in
Ref. [5] may not be straightforwardly applied even with the
assumption of a heavily damped ancilla oscillator due to
measurement. Here we take a slightly different approach. As
the ancilla is assumed to be heavily damped, it will relax
very rapidly to its steady state within a time scale on the
order of the typical response time of the system oscillator,
and will appear to the system oscillator effectively as a
“bath.” To see the consequences of a rapidly decaying ancilla
oscillator on the dynamics of the system oscillator, we use
the quantum open systems approach to find the master equa-
tion for the reduced density matrix of the system oscillator.
In obtaining the master equation, the correlation functions of
the “effective bath”(or the ancilla oscillator) are calculated
using the generalizedP-representation approach[6]. The
generalizedP-representation approach has the advantage of
removing some of the unnecessary restrictions imposed in
Ref. [5].

We find that in the presence of the self-anharmonic term
x1

4 of the ancilla oscillator the effect of increasing driving
strength and self-nonlinearity tends to shift the resonance
frequency, increase the peak value, and decrease the width of
the response of the peak ofG /G0 (see Fig. 2 in Sec. V A).
The quantityG /G0 is the ratio of the back-action diffusion
coefficient (or decoherence rate) G [see Eq.(55)] and its
valueG0 at zero self-anharmonicity and zero detuning. If the
damping of the ancilla oscillator is much larger than the ef-

fect of the self-anharmonic term, the overall effect of the
self-anharmonic term on the phonon-number measurement is
small. Finally, we show that the induced electromotive read-
out current[8] from the ancilla oscillator provides informa-
tion on the phonon number of the system, even in the pres-
ence of higher-order anharmonic terms, and we obtain the
relation between the current and the measured system ob-
servable.

In the next section, we discuss briefly the measurement
scheme and Hamiltonian, and obtain the master equation for
the model described above while keeping higher-order self-
anharmonic terms. It turns out that the master equation we
obtain requires two-time correlations of the ancilla oscillator
operators. Section IV deals with this issue. We find one- and
two-time correlation functions of the ancilla. In Sec. V, we
examine the effect of the self-anharmonic terms on the dy-
namics of the system oscillator from the master equation of
its reduced density matrix. In Sec. VI, we obtain the depen-
dence of the measurement current on the measured system
oscillator observable, the phonon number.

II. HAMILTONIAN AND THE MASTER EQUATION

A. Proposed scheme

Our model consists of two mesoscopic-scale mechanical
bridges with rectangular cross section. One serves as a sys-
tem oscillator(oscillator 0 in Fig. 1) to be measured. The
other is used as an ancilla oscillator(oscillator 1 in Fig. 1),
and is part of the measuring apparatus. Details of the scheme
have already been discussed in Ref.[5]. A schematic illus-
tration is reproduced in Fig. 1. These mesoscopic-size elastic
bridges or beams with rectangular cross section are con-
nected by a device that transmits only one of the flexing
modes of the system oscillator to the ancilla oscillator. As a
result, these two resonators are anharmonically and sym-
metrically coupled(for experimental progress toward the
scheme, see Ref.[1]). We label the measured system oscil-
lator with subscript 0 and the ancilla oscillator with subscript
1, with corresponding resonant frequencies of the two flexing
modes labeled asv0 andv1, respectively. The ancilla oscil-
lator is driven at frequencyvd with strengthestd. A measur-
ing apparatus is attached to the ancilla oscillator. The whole
structure is subjected to the thermal bath environment. The
interaction of the system oscillator with the thermal bath
causes thermal dissipation and excitation of the system os-
cillator, which results in random-in-time transitions between
phonon-number eigenstates( i.e., quantum jumps). A change
in the energy of the system oscillator appears to the ancilla
oscillator as a shift of the resonant frequency via the anhar-
monic coupling. This frequency shift may be detected as a
phase shift of the oscillations of the ancilla oscillator with
respect to the driving, when driven at a fixed frequency near
resonance.

B. Model Hamiltonian

The free Hamiltonian for the two bridge oscillators 0 and
1 is

FIG. 1. Schematic of phonon-number measurement for a
coupled mechanical oscillator. Oscillators 0 and 1 are anharmoni-
cally coupled with coupling strengthl01. Both oscillators are sub-
jected to thermal-noise injection and dissipation. The oscillator 1 is
driven and a read-out apparatus is attached to it.

SANTAMORE et al. PHYSICAL REVIEW A 70, 052105(2004)

052105-2



Hfree= "v0a
†a + "v1b

†b, s1d

wherea† and a are creation and annihilation operators for
oscillator 0, respectively, and similarlyb† andb for oscillator
1. The ancilla oscillator is driven at frequencyvd with driv-
ing strengthe,

Hdrive = "e cossvdtdsb† + bd. s2d

In the interaction picture, the driving term becomes

Hdrive
I = 2"esb†e+idv + be−idvd, s3d

wheredv is the detuning between the ancilla resonant fre-
quency and the driving frequency,v1−vd.

The two oscillators are coupled anharmonically through
the special coupling device that controls and allows only one
type of strain(the longitudinal stretch) to pass to the other
oscillator. Beyond the linear elasticity theory, the two flexing
modes, which are perpendicular to each other, are coupled.
Expansion of the elastic energy with respect to the strain
tensor is taken up to second order. The next term, cubic in
the elastic energy, gives quadratic terms in the equation of
motion [9,10]. Since the coupling of the two modes of the
two beams is symmetric, and since the two modes are not
coupled at the linear level, the first order in coupling isx0

2x1
2,

where xi is the displacement operator. So we expand the
anharmonic terms up to first order in coupling and obtain

Hanh= "sl̃0x0
2 + l̃00x0

4 + l̃1x1
2 + l̃11x1

4d, s4d

Vanh= "l̃01x0
2x1

2, s5d

wherel̃i j is the coupling coefficient. The high frequencies of

the resonators, i.e.,sv0−v1d much larger thanl̃01 and their
damping rates, allows us to use the rotating-wave approxi-
mation. Thus we write the anharmonic terms as

Hanh= "l00sa†ad2 + "l11sb†bd2, s6d

Vanh= "l01a
†ab†b, s7d

where we have defined the standard raising and lowering
operators for the oscillators, a=Îm0v0/2"x0
+ iÎ1/2"m0v0p0, a† is the Hermitian conjugate ofa, and
similarly for b andb† with the subscript 0 replaced by 1. We
have also introduced new coefficientsl (without tildes)
which all have the same dimension of frequency.

The coupling terml01a
†ab†b commutes with the observ-

able a†a, enabling a quantum nondemolition(QND) mea-
surement. The termsl0a

†a and l1b
†b shift the resonance

frequency by a constant amount, so we have absorbed these
quantities into v0 and v1. The terms "l00sa†ad2 and
"l11sb†bd2 are analogous to Kerr nonlinearities in nonlinear
optics. Since these terms commute with the measured ob-
servablesa†ad, they will not change the system phonon-
number eigenstates; however, the Kerr effect causes an
intensity-dependent phase shift. Unlike a coherent state, in
which this effect results in rotational shearing, a thermal state
will not be affected by phase shift, due to its rotational in-
variance.

As for detecting phonon number in the system oscillator,
we adapt a magnetomotive detection scheme suggested by
Yurke et al. [8,11,12]. The voltage developed is proportional
to dx1/dt, wherex1 is the displacement of the beam from its
equilibrium position. The current induced by this voltage is
monitored by phase lock-in amplifier. An experimenter
monitors the amplitude of the current and its phase with
respect to the driving current that is set to a frequency near
resonance. The details of the relation between the measured
current and the phonon number of the system oscillator are
derived in Ref.[5].

There are two physically distinct environments in the
model: the thermomechanical environment of each oscillator
and the electronic noise environment of the electrical system
that ultimately provides information on the motion of the
ancilla. The environments are modeled as thermal baths,
each consisting of an infinite number of harmonic oscillators.
The couplings between the oscillators and the thermal baths
are considered as weak, linear, and Markovian; thus we use
the rotating-wave approximation. The Hamiltonian of the
baths and their coupling to the oscillators can then be written
as

Hbath= "o
s

o
n

vs,iBs,n
† Bs,n, s8d

Vbath= "sVB0
† a + a†VB0d + "sVB1

† b + b†VB1d

+ "sVBm
† b + b†VBmd, s9d

where s runs over three different baths: the thermal baths
coupled to the system oscillatorsB0d and ancilla oscillator
sB1d, and the electronic(measurement) bath coupled to the
ancilla oscillatorsBmd. The operator

Vs = o
n

gssvndBs,n s10d

consists of bath operators, and the coupling to the bath
modes is given by the coefficientsgssvnd.

C. Master equation

Using the standard technique for open quantum systems,
we first obtain the master equation for the joint density ma-
trix of the two oscillators,R, by tracing out the bath vari-
ables:

dR

dt
= − iv0sa†a,Rd − il00fsa†ad2,Rg − idvsb†b,Rd

− iesb† + b,Rd − il11fsb†bd2,Rg − il01sa†ab†b,Rd

+ nsN0 + 1dDfagR+ nN0Dfa†gR+ ksN1 + 1dDfbgR

+ kN1Dfb†gR, s11d

where

DfOgR= 2ORO† − sO†OR+ RO†Od, s12d

DfO†gR= 2O†RO− sOO†R+ ROO†d s13d

are defined for arbitrary operatorsO andR. The damping rate
of the system oscillatorn is given by
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n ; p%B0sv0dugB0sv0du2. s14d

It is related to the quality factorQ0 of the system oscillator
by n=v0/2Q0. We have combined the damping ratesm and
h, due respectively to the thermal bath and measurement on
the ancilla oscillator, intok=m+h, where

m ; p%Bmsv1dugBmsv1du2, s15d

h ; p%B1sv1dugB1sv1du2. s16d

Here%ssvd is the density of states of baths at frequencyv.
The Ni are the Bose-Einstein factors

N0 =
1

e"b0v0 − 1
, s17d

andN1=shN1̂+mNmd /k, where

N1̂ =
1

e"b1v1 − 1
, Nm =

1

e"bmv1 − 1
, s18d

with bi =skBTsd−1 and Ts the temperature of baths. In Eq.
(11), the first and the second lines are the free Hamiltonian
and nonlinear Kerr effect terms for system and ancilla oscil-
lators, respectively. The third line in Eq.(11) is associated
with the anharmonic coupling, and the last two lines are
consequences of the interactions with thermal baths.

III. EFFECT OF HEAVILY DAMPED ANCILLA
OSCILLATOR

To proceed further toward a master equation for the re-
duced density matrix for the system oscillator alone, the an-
cilla oscillator is assumed to be heavily damped due to mea-
surements i.e.,k@li j ,n. In this case, the ancilla oscillator
will relax very rapidly to its steady state and appear to the
system oscillator as a “bath.” In fact, ifl11!v1 and l01
!k, the ancilla oscillator in Eq.(11) will remain near a
thermal steady state with average numberN1. However, we
will relax the conditionl11!v1 and treat the interactionl01
term perturbatively.

To see the consequences of the rapid decay of the ancilla
oscillator on the dynamics of the system oscillator, we use
perturbation theory and expand the interaction Hamiltonian
HIstd=l01a

†ab†b up to second order, and trace out the ancilla
oscillator variables. This implies that we need to calculate
the relevant steady-state averages and correlation functions
for the ancilla oscillator in the presence of the anharmonic
term l11sb†bd2.

In this case, the master equation for the reduced density
matrix rstd for the system oscillator alone can be written as

drstd
dt

= − iv0fa†a,rstdg − il00fsa†ad2,rstdg + nsN0 + 1d

3Dfagrstd + nN0Dfa†grstd − i Tr1fHIstd,Reffstdg

−E
0

t

Tr1†HIstd,fHIst8d,Reffstdg‡dt8, s19d

whereReffstd<rstdr1std is the effective joint density matrix

of the two oscillators under the approximation that the an-
cilla oscillator is heavily damped. Explicitly, the second term
of the last line of Eq.(19) can be written as

E
0

t

Tr1†HIstd,fHIst8d,Reffstdg‡dt8

= − sl01d2E
0

t

a†astda†ast8drstdkb†bstdb†bst8dldt8

+ sl01d2E
0

t

a†astdrstda†ast8dkb†bst8db†bstdldt8

+ sl01d2E
0

t

a†ast8drstda†astdkb†bstdb†bst8dldt8

− sl01d2E
0

t

rstda†ast8da†astdkb†bst8db†bstdldt8.

s20d

The exact correlation functions of the ancilla oscillator are
not easy to evaluate because of the presence of the anharmo-
nicity, the driving, and the decay terms. However, one can
make an expansion of the state of the ancilla oscillator
around its steady state and linearize the fluctuations, assum-
ing them to be small[7,14].

Define the steady-state mean field amplitudes askbl`

=b0. The operatorb can be written in terms of small fluc-
tuations about the steady-state mean value as

bstd = b0 + b1std. s21d

Then, keeping terms up to quadratic order inb1,b1
†, the in-

teraction HamiltonianHI =l01a
†ab†b becomes

HI = l01a
†afub0u2 + b0

*b1std + b0b1
†std + b1

†stdb1stdg. s22d

The first term in Eq.(22) contributes to a shift in the resonant
frequency of the system oscillator by a constant amount and
can be combined with the free Hamiltonian. Inserting this
expression back into the first term of the last line of Eq.(19)
gives the first-order expansion term

− il01Tr1fa†astdb†bstd,Reffstdg = − il01fa†astd,rgkb1
†b1stdl,

s23d

where we have used the fact that averages of fluctuation
fields vanish, i.e.,

kb1l = kb1
†l = 0. s24d

Now we turn our attention to the second-order term, Eq.
(20). Note that, sincek@n, the phonon numbera†astd of the
system oscillator changes with time on a time scale much
larger thanb†bstd of the ancilla oscillator. So we can approxi-
matea†ast8d.a†astd in Eq. (20) and pull the system oscilla-
tor terms outside the integral. Then Eq.(20) becomes
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E
0

t

Tr1†HIstd,fHIst8d,Reffstdg‡dt8

< sl01d2ha†astdrstda†astd − fa†astdg2rstdjE
0

t

kBst,t8dldt8

+ sl01d2ha†astdrstda†astd − rstdfa†astdg2jE
0

t

kBst8,tdldt8

s25d

where

kBst,t8dl = sb0
*d2kb1stdb1st8dl + ub0u2kb1stdb1

†st8dl

+ ub0u2kb1
†stdb1st8dl + sb0d2kb1

†stdb1
†st8dl, s26d

kBst8,tdl = sb0
*d2kb1st8db1stdl + ub0u2kb1st8db1

†stdl

+ ub0u2kb1
†st8db1stdl + sb0d2kb1

†st8db1
†stdl, s27d

and higher-order fluctuation terms thanb1
2 are ignored. The

linearization transforms the second-order correlation func-
tions of the ancilla operators,kb†bstdb†bst8dl and
kb†bst8db†bstdl, into first-order correlation functions of fluc-
tuation fields, kb1

†stdb1st8dl, kb1
†stdb1

†st8dlkb1
†stdb1st8dl, and

kb1
†stdb1

†st8dl.

IV. ONE- AND TWO-TIME CORRELATION FUNCTIONS
OF ANCILLA

In this section we calculate the one- and two-time corre-
lation functions of the ancilla oscillator. For this purpose,
first we need to calculate the one-time correlation functions
of a single driven anharmonic oscillator. We will follow the
method of Drummond and Walls[14], who obtained one-
time correlation functions. Then we extend their method to
calculate two-time correlation functions.

The master equation for the driven, anharmonic ancilla
oscillator interacting with the thermal bath is given by

dr1std
dt

= − idvfb†b,r1stdg − iefb† + b,r1stdg

− il11fsb†bd2,r1stdg + ksN1 + 1dDfbgr1std

+ kN1Dfb†gr1std, s28d

wherer1 is the density matrix of the ancilla oscillator and
dv=v1−vd is the detuning, withvd the driving frequency.
The exact steady-state one-time correlation functions for a
system with master equation Eq.(28) at zero temperature
were given in Refs.[7,14], in a discussion of optical bista-
bility of a coherently driven dispersive cavity with a cubic
nonlinearity in the polarizability of the internal medium. At
finite temperature, no exact solution has been found.

Our first objective is to derive a stochastic differential
equation from the quantum master equation. Representing a
density matrix in a coherent state basis is useful in systems
described by Bose operatorsb†,b. Due to the presence of the
nonlinear, self-anharmonic term, we will use the generalized
P representation introduced by Drummond and Gardiner[6]

to preserve the positivity of the Hermitian density operator.
Using the above transformations, the Fokker-Planck equa-

tion corresponding to the master equation Eq.(28) can now
be written as

]

]t
Psb̂d = S ]

]b
fsk + idv + il11db − 2il11b

2a + ieg

− il11
]2

]b2b2 +
]

]a
fsk − idv − il11da − 2il11a

2b

− ieg − il11
]2

]a2a2 + 2kN1
]2

]b]a
DPsb̂d. s29d

The argument of the generalizedP function is b̂=sb ,adT.
The correspondence principle between operators andc num-
bers is as follows:b↔b anda↔b†. However,sb ,ad are not
complex conjugates. Drummond and Gardiner have shown

[6] that the Fokker-Planck equation inb̂ can be transformed
to a stochastic differential equation with positive definite
diffusion.2 They found that the stochastic differential equa-
tions in the Ito calculus corresponding to Eq.(29) are

]

]t
Fb

a
G = F− ie − bsk + idv + il11 + 2il11bad

ie − ask − idv − il11 − 2il11abd G
+ F− 2il11b

2 2kN1

2kN1 2il11a
2G1/2Fj1

j2
G , s30d

wherej1 and j2 are random Gaussian functions, so thatb
and a are complex conjugate in the mean.3 This stochastic
differential equation is nonlinear and not solvable as it is.
However, it is reasonable to use a small-noise expansion and
linearize the fluctuations about the steady state of the mean
field amplitudes. Thus we writeb in terms of the mean am-
plitude and first-order expansion of the fluctuation,

bstd = b0 + b1std, s31d

where b0 is the steady-state mean amplitude ofb and is
given by

b0 =
− ie

isdv + l11 + 2l11ub0u2d + k
, s32d

and b1 is the zero-mean fluctuation amplitude. We have a
similar expression fora. Thusb0 and a0 are complex con-
jugate to each other(i.e., b0a0= ua0u2= ub0u2;n0). Then to
first order in the fluctuations, the fluctuation amplitude vector

b̂1=sb1,a1dT obeys a stochastic differential equation

2Note that their notation is different from ours: theirb corre-
sponds to ourb and theirb† to our a.

3The means ofb and a are complex conjugates. However, fluc-
tuation introduces a stochastic component, and sob anda deviate
from being complex conjugate.
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]

]t
b̂1std = − A · b̂1std + D1/2sb̂0dĵstd, s33d

whereĵ=sj1,j2dT is the noise vector,A is the linearized drift

matrix, andD is the diffusion matrix evaluated atb̂=b̂0. The
matricesA andD are

A = Fk + idv + il11 + 4il11n0 2il11b0
2

− 2il11a0
2 k − idv − il11 − 4il11n0

G
s34d

and

D = F− 2il11b0
2 2kN1

2kN1 2il11a0
2G . s35d

The one-time correlation matrix can be calculated using the
method of Chaturvediet al. [7,14–16]:

Cst,td = F kb1
2l kb1a1l

ka1b1l ka1
2l

G =
1

L2F− il11b0
2sk − idv − il11 − 4il11n0ds2N1 + 1d N1uk + idv + il11 + 4il11n0u2 + 2l11

2 n0
2

N1uk + idv + il11 + 4il11n0u2 + 2l11
2 n0

2 − il11a0
2sk + idv + il11 + 4il11n0ds2N1 + 1d

G ,

s36d

where

L2 = k2 + L1
2, s37d

L1
2 = sdv + l11d2 + 8sdv + l11dl11n0 + 12l11

2 n0
2. s38d

We now derive an expression for the two-time steady state
correlation matrix

Cst,t8d = Fkb1stdb1st8dl kb1stda1st8dl
ka1stdb1st8dl ka1stda1st8dl

G . s39d

For t. t8,

Cst,t8d = expf− Ast − t8dgCst,td, s40d

and for t, t8,

Cst,t8d = Cst,tdexpf− ATst8 − tdg. s41d

Let us defineM st ,t8d;expf−Ast− t8dg. The matrixM can be
calculated as follows. Let the matrixU=su1,u2d diagonalize
A with eigenvaluesl±. The eigenvalues for this 232 matrix
can be found from the characteristic equation

l± =
TrsAd ± ÎfTrsAdg2 − 4 detsAd

2
= k ± iL1. s42d

We then obtain the matrixM as

M st,t8d = UFexpf− l+st − t8dg 0

0 expf− l−st − t8dg
GU−1

=
1

2L1
FsL1 − cde−l−st−t8d + sL1 + cde−l+st−t8d 2l11b0

2s− e−l−st−t8d + e−l+st−t8dd

2l11a0
2se−l−st−t8d − e−l+st−t8dd sL1 + cde−l−st−t8d + sL1 − cde−l+st−t8d G , s43d

wherec;4l11n0+dv+l11. The two-time correlation matrix
Eq. (39) then follows directly from Eqs.(40), (41), and(43),
as well as the fact that expf−Ast− t8dg=M st ,t8d and
expf−ATst8− tdg=M Tst8 ,td.

The detailed expressions of the two-time correlation func-
tions are shown in the Appendix. We note that in theP rep-
resentation, thec-number time correlation function corre-
sponds to a normally ordered time correlation function of the
operators; thus the correlations above do not correspond to

all the two-time correlation functions we need to find. For
non-normally ordered time correlation functions, some care
needs to be exercised. Using the procedure described, for
example, in Refs.[16,17], we obtain the following operator
to c-number correspondence:

kb1stdb1st8dl = kb1stdb1st8dl, s44d

kb1stdb1
†st8dl = kb1stda1st8dl + M11st,t8d, s45d
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kb1
†stdb1st8dl = ka1stdb1st8dl, s46d

kb1
†stdb1

†st8dl = ka1stda1st8dl + M21st,t8d, s47d

kb1st8db1stdl = kb1stdb1st8dl + M12st,t8d, s48d

kb1st8db1
†stdl = ka1stdb1st8dl + M22st,t8d, s49d

kb1
†st8db1stdl = kb1stda1st8dl, s50d

kb1
†st8db1

†stdl = ka1stda1st8dl, s51d

where Mijst ,t8d are the matrix elements of the matrix
M st ,t8d, Eq. (43).

V. MASTER EQUATION FOR A REDUCED
DENSITY MATRIX

Having found the one- and two-time correlation functions,
we can now evaluate Eqs.(23) and(25) and obtain the mas-
ter equation for the reduced density matrix of the system
oscillator as

dr

dt
= − isv0 + Ddfa†a,rg − iQfsa†ad2,rg − G†a†a,fa†a,rg‡

+ nsN0 + 1dDfagr + nN0Dfa†gr, s52d

where

D = l01Sn0 +
1

L2sN1uk + idv + il11 + 4il11n0u2 + 2l11
2 n0

2dD ,

s53d

Q = l00 +
l01

2 n0

L2 sdv + il11 + 2l11n0d, s54d

G =
l01

2

L4 kn0s2N1 + 1dfuk + idv + il11 + 4il11n0u2

− 4l11n0sdv + l11 + 3l11n0dg =
l01

2

L4 ke2s2N1 + 1d.

s55d

We have setn0= ub0u2, and L2 is defined in Eqs.(37) and
(38). In obtaining the last equality of Eq.(55), we have used
Eq. (32).

In Eq. (52), D in the first term is the resonant frequency
shift due to interactions. The second term is the Kerr nonlin-
ear phase shift, with coefficientQ depending on the anhar-
monicity of both oscillatorsl00 and l11, as well as the de-
tuning of the ancilla oscillator. The parameterG is the phase
diffusion coefficient or decoherence rate, associated with
back action due to an effective measurement ofa†a. Physi-
cally, due to monitoring, the system would localize or col-
lapse into a phonon-number eigenstate on a time scale of
orderG−1. The measurement time that is needed for the mea-
surement apparatus to distinguish one state from the next is

also proportional toG−1. The last two terms in Eq.(52) can
be derived from the thermal coupling to the system and are
responsible for the quantum jumps. In the case whenn=0,
the conditional master equation of Eq.(52) will describe a
QND measurement of the system oscillator phonon number.
The time the system stays in a given phonon-number state
before making a transition due to either excitation or relax-
ation is proportional ton−1. To be a good quantum measure-
ment of a phonon-number state, we want the system’s dwell-
ing time to be long compared to the time necessary to
determine which number state the system is in, i.e.,sG /nd
@1.

A. Effects of the anharmonic terms

From Eq.(52), we notice several important points. First,
in the case of no detuning and no nonlinear self-anharmonic
terms( i.e., dv=0, l00=l11=0), we have

D = l01fN1 + se/kd2g, s56d

Q = 0, s57d

G =
l01

2 e2s2N1 + 1d
k3 . s58d

These results agree with the results of a simpler model dis-
cussed in Ref.[5], using a slightly different adiabatic elimi-
nation approach.

Second, the steady-state solution Eq.(32) of Eq. (30)
gives

ueu2 = n0fk2 + sdv + l11 + 2l11n0d2g. s59d

Equation(59) has an analogy to a classical anharmonic os-
cillator [13]. Bistability due to a Kerr nonlinearity is a well-
known phenomenon. Classically the oscillator will take one
or the other of the stable solutions. Using the Hurwitz stabil-
ity criterion, to obtain a stable solution for Eqs.(33)–(35) it
is necessary to have

TrsAd . 0, s60d

DetsAd . 0. s61d

For the matrix, Eq.(34) gives TrsAd=2k.0 for a dissipative
or loss mechanism. Therefore the threshold points are deter-
mined by DetsAd=L2=0. However, in the quantum regime
at zero temperature, bistability appears only during the tran-
sient period and does not exist in the steady state[6,7]. We,
nevertheless, note that the linear theory that we use to calcu-
late the steady-state correlation functions at finite tempera-
tures would break down at the instability points.

Second, from Eqs.(52) and (55), we see that whendv
=0, the conditionk@l11 makes the effect of the nonlinear
self-anharmonic terms inD andG very small, which justifies
the assumption of neglectingl11 in Ref. [5]. However, our
calculation allows us to do a quantitative analysis without
making this assumption.

The value of the phase diffusion coefficientG (as com-
pared to the damping raten) is important to the phonon-
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number measurement scheme and to the observation of
quantum jumps. To see the effects of self-anharmonicity and
driving and detuning of the phase diffusion coefficientG
compared to its valueG0 at zero self-anharmonic coupling
and zero detuningsl11=e=0d [5], we plot their ratio

G

G0
=

k4

L4 s62d

in Fig. 2. Note thatG diverges atL2=0, which are the insta-
bility points where the linear theory is not valid. The param-
eters(in units of k) in Fig. 2 are chosen so that the ancilla
oscillator is away from these points. For example, if we were
to increase further the driving strength in the dot-dashed line
plot of Fig. 2, toe=1.2, say, the ancilla oscillator would then
be in the instability regime. When the nonlinearityl11 is
small, the solid line plot in Fig. 2 shows the linear resonance
of small driving. The dotted, dashed, and dot-dashed line
plots illustrate that increasing the driving strength and the
nonlinearity tends to shift the resonance frequency, increase
the peak value, and decrease the width of the peak ofsG /G0d.

Carr and Wybourne have estimated an anharmonic coef-
ficient lii for a beam with rectangular cross section[18]

lii =
p4

128

"B

ri
2vi

2Li
5witi

, s63d

whereB is the bulk modulus,ri is the mass density,L ,w,t
are the dimensions of the beam: length, width, thickness,
respectively. A simple estimation ofk andl11 using realistic
values for a mesoscopic mechanical oscillator reveals that
l11 is many order of magnitude smaller thank.

VI. MEASUREMENT CURRENT

In the measurement scheme, we do not observe the pho-
non number of the system oscillator directly. Rather we per-
form a phase-sensitive, “homodyne” measurement on the
quadraturesb+b†d of the ancilla oscillator. It is therefore

important to show that an observation of the average current
kIl=Î2mkb+b†l indeed corresponds to a phonon-number
measurement of the system oscillator. We anticipate that the
average measured current of the ancilla oscillator is propor-
tional to the average phonon number in the measured system
oscillator. In addition we need to show that the coefficient of
proportionality is related to the localization rate, which de-
termines how long it takes to distinguish one number state
from the next. Thus a strong signal corresponds to a rapid
localization rate. Furthermore, we expect that the localization
rate is proportional to the back-action-induced phase diffu-
sion coefficientG, so that the better the measurement, the
larger is the back-action noise.

To demonstrate this, first we use the Hamiltonian to ob-
tain the quantum Langevin equation for the ancilla oscillator
operatorb:

db

dt
= − ie − idvb − il01a

†ab− i2l11b
†bb− fhbstd

− Î2hBinstdg − fmbstd − Î2mDinstdg, s64d

db†

dt
= ie + idvb† + il01a

†ab† + i2l11b
†b†b − fhb†std

− Î2hBin
† stdg − fmb†std − Î2mDin

† stdg, s65d

where Binstd is the input noise [17]. The steady-state
fsdb/dtd=0g average ofkbl=b0 for the ancilla oscillator in
isolation (i.e., with l01=0) is given by the same expression
as Eq.(32). Linearizing around the steady state, renaming
the operator describing the quantum fluctuation asb1std, and
assuming thata†a do not change appreciably over the typical
time scale of the ancilla oscillator, we obtain

db1

dt
= − isdv + l11db1 + 2l11s2n0b1 + b0

2b1
†d + l01b0a

†a

− kb1 + Î2hBin + Î2mDin, s66d

db1
†

dt
= isdv + l11db1

† + 2l11s2n0b1
† + sa0

2b1
†dd + l01a0a

†a − kb1
†

+ Î2hBin
† + Î2mDin

† , s67d

or, equivalently,

d

dt
Sb1

b1
†D = ASb1

b1
†D + Sl01b0a

†a + Î2hBin + Î2mDin

l01a0a
†a + Î2hBin

† + Î2mDin
† D ,

s68d

where A is defined in Eq.(34). To calculatekb+b†l=b0

+a0+kb1+b1
†l in the steady state, we setsdb1/dtd=0

=sdb1
†/dtd in Eq. (68), to obtain

Skb1l
kb1

†l
D = A−1Sl01b0a

†a

l01a0a
†a
D . s69d

Then after a simple calculation, we obtain the measured
mean signal

FIG. 2. The ratio ofG /G0 as a function of detuning at different
values of driving strength and self-anharmonicity(Kerr effect cou-
pling). The parameters are presented in units of the damping ratek.
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Î2mkb1 + b1
†l = − iÎ2m

l01

L2 „hfk − isdv + l11 + 4l11ub0u2d

+ 2il11sa0d2gb0j − H.c.…ka†al

= − iÎ2m
l01

L2 fksb0 − a0d

− isdv + l11 + 2l11ub0u2dsb0 + a0dgka†al.

s70d

Using Eq.(32), we can simplify Eq.(70) further and obtain

Î2mkb1 + b1
†l = − Î2m

2el01

L2 ka†al. s71d

We note that the coefficient on the right hand side of Eq.(71)
is proportional toÎG, with a proportionality factor given by
−Î8m /ks2N1+1d. As the actual read-out current is simply
proportional to the average position of the ancilla oscillator
[2], Eq. (71) gives the expected proportionality between the
average measured current and the average phonon number of
the system oscillator.

In a typical experimental run, the measured current will
contain a noise component made up of thermoelectrical noise
in the transducer circuit as well as intrinsic quantum noise
that arises directly from the back-action noise when we mea-
sure phonon number. In order for the measurement to be
quantum limited, we need to ensure that the dominant source
of noise is back-action noise. Recently, considerable progress
toward this limit has been made in a nanoelectromechanical
system[19].

VII. CONCLUSIONS

We have investigated a scheme for the QND measurement
of phonon number(cf. [5]) using two anharmonically
coupled modes of oscillation of mesoscopic elastic bridges.
We have included the self-anharmonic terms neglected in the
previous analysis[5], and analyzed the effect of higher-order
anharmonic terms in the approximation that the ancilla oscil-
lator is heavily damped. We have shown that in the presence
of a self-anharmonic termx1

4 of the ancilla oscillator, the
effect of increasing driving strength and self-nonlinearity
tends to shift the resonance frequency, increase the peak
value, and decrease the width of the response of the peak of
G /G0 as shown in Fig. 2. If the damping of the ancilla oscil-
lator is much larger than the effect of the self-anharmonic
term, the overall effect of the self-anharmonic term on the
phonon-number measurement is small for small detuning,
justifying the assumption of neglecting the self-anharmonic
term at zero detuning in Ref.[5]. Our calculation, however,
allows one to do a quantitative analysis at finite detuning and
without making this assumption.

The key idea of the measurement scheme is that, from the
point of view of the ancilla oscillator, the interaction with the
system oscillator constitutes a shift in resonance frequency
that is proportional to the time-averaged phonon number or
energy excitation of the system oscillator. This frequency
shift may be detected through a phase-sensitive readout of

the position of the driven read-out oscillator. In a magnetic
field, a wire patterned on the moving read-out oscillator will
result in an induced current which can be directly monitored
by electrical means[8]. The current gives direct access to the
position of the ancilla oscillator and, through the mechanism
described in this paper, to the phonon number of the mea-
sured system oscillator, even in the presence of the self-
anharmonic terms. We have shown that this scheme realizes
an ideal QND measurement of phonon number in the limit
that the back-action-induced phase diffusion rate is much
larger than the rate at which transitions occur between
phonon-number states,G /n→`. When the ratioG /n is finite
and large, it is then possible to observe, in the read-out cur-
rent, quantum jumps between Fock(number states) in a me-
soscopic mechanical oscillator, as the mechanical oscillator
exchanges quanta with the environment.

We briefly discuss below some possible realistic values
for G andn. The value ofG0 depends on the external driving,
as well as the materials and dimensions of the mechanical
beams(oscillators). Here we quote the example in Ref.[5]
using two GaAs mechanical oscillators with resonance fre-
quenciesv0=2.3 GHz, v1=0.36 GHz, andQ factors Q0

=10 000,Q1=1000. The dimensions of the system oscillator
are 0.630.0430.07mm3 and those of the ancilla oscillator
are 0.630.0430.01mm3. With the magnetic field 10 T and
the driving current 1mA, G0 andn will be G0<1.53104/s
and n<1.23106/s, or G0/n=0.013. A clear observation of
quantum jumps requiresG0/n@1, so that the present ex-
ample is two orders of magnitude below the desired param-
eter regime. To increase the ratio ofG to n we can improve
on some of the parameters. One way is to increase theQ
factor of the system oscillator. Another way is to use lower-
density material such as carbon nanotubes as well as to de-
crease the thickness of the oscillator. These improvements
are feasible with current fabrication technology. In addition,
it is also possible to engineer the nonlinear coupling between
the oscillators[4]. Furthermore, different driving and detec-
tion schemes other than magnetomotive detection can be
considered to increase the driving strength. Given the steady
improvement in fabrication technology and experimental
techniques, we believe that observing quantum jumps be-
tween phonon-number states in a mesoscopic oscillator will
be possible in the near future.
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APPENDIX: EXPRESSIONS FOR THE TWO-TIME
CORRELATION FUNCTIONS

The two-time correlation functions in the main text for
Cst ,t8d, wheret. t8, are

kb1stdb1st8dl =
1

2L1
hsL1 + cdexpf− l+st − t8dg

+ sL1 − cdexpf− l−st − t8dgjkb1
2l +

l11b0
2

L1

3hexpf− l+st − t8dg − expf− l−st − t8dgj

3kb1a1l, sA1d

ka1stdb1st8dl =
1

2L1
hsL1 + cdexpf− l+st − t8dg + sL1 − cd

3expf− l−st − t8dgjka1b1l +
l11b0

2

L1

3hexpf− l+st − t8dg − expf− l−st − t8dgjka1
2l,

sA2d

kb1stda1st8dl =
− l11a0

2

L1
hexpf− l+st − t8dg − expf− l−st − t8dgj

3kb1
2l +

1

2L1
hsL1 − cdexpf− l+st − t8dg

+ sL1 + cdexpf− l−st − t8dgjkb1a1l, sA3d

ka1stda1st8dl =
− l11a0

2

L1
hexpf− l+st − t8dg − expf− l−st − t8dgj

3ka1b1l +
1

2L1
hsL1 − cdexpf− l+st − t8dg

+ sL1 + cdexpf− l−st − t8dgjka1
2l, sA4d

where c=4l11n0+dv+l11 and L1
2=sdv+l11d2+8sdv

+l11dl11n0+12l11
2 n0

2 as in the main text. These equations
give thec-number two-time correlation functions we need to
obtain the operator two-time correlation functions in Eqs.
(44)–(51).
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